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Abstract —A generafiied hilateraf finfine with mounting grooves and

finite conductor t~ckness is analyzed by a full-wave mode-matching

method. The final nonstand@ eigenvafue equation is derived from the

unknown coefficients in @e slot re-gions to reduce the size of the matrix

equation. The convergence studies of the mode-matching method are first

performed for the fundament@ mode of a symmetric bifateraf finfine. Both

the propagation constant and the characteristic impedance b- on the

power-voltage definition are a~alyxed and comparqf to the existing d@a.

ExceUent agreement be$w~n various data is obtained and the effects of

metaflization thi@ness and mounting grooves are dkcussed. The accurate

results for the fundament~ rn@e obtained by the mode-matchiqg method

with considerations pf bbth relative Wd absolute convergence apply

eqrmfly weU to the analyses of he complex modes of the fhdine. The field

matching plots at the slot+ieleetic (air) interface of the firdine also

confirm that the converged solutions for the complex modes have superior

field matchings over the nonconverged ones. The dispersion characfenstics

of the fundamental, higher order, evaneseen~ and complex modes are

presented for an asymmetric bilateraf finline. The effeets of mounting

grooves and metaflization thickness on the complex mode propagation

constants are investigated and discussed.

‘1. INTRODUCTION

sINCE THE introduction of the finline in 1972 [1], it

has become an important class of transmission lines in

millimeter-wave integrated circuits. To accurately charac-

terize the electrical behavior of the various types of discon-

tinuities which are frequently encountered in almost all the

practical firdine integrated circuits, many rigorous analyti-

cal techniques have been developed, e.g. the spectral-

domain analysis by Zhang and Itoh [2], the transverse

resonance technique by Sorrentino and Itoh [3], and the

generalized scattering matrix (GSM) technique by a num-

ber of authors [4]-[6]. The authors in [2]-[6] dealt with the

ideal finlines with infinitely thin metallizations or without

mounting grooves. The influences of metallization thick-

ness and mounting grooves can be pronounced at higher

millimeter-wave frequencies [7]. The only analytical method

reported to solve the generalized finline structure shown in
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Fig. 1. Generalized finline with monntmg grooves and finite metalliza-

tion thickness. (a) Generalized finline configuration. (b) Notation for
the corner coordinates and dimensicms of a specific region j.

Fig. 1 that takes into consideration both metallization

thickness and substrate mounting grooves is the general-

ized transverse resonance method [8]–[10]. This technique

is the modified mode-matching method combined with a

transverse resonance relation. Regardless of the dimension

of each region, the technique genuinely matches the

boundary conditions associated with the dielectric, slot,

and thick metal strip regions by an equal number of

eigenfunction expansion terms for each region. It was
mentioned briefly that the asymptotic behavior of the

normalized propagation constants [10, fig. 2] is sufficient

for 18 eigenfunction terms to be used for subsequent

calculations in the paper. No flw-ther detailed investiga-
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tions of the convergence properties of the propagation

constants and characteristic impedance of the finline have

been reported using the generalized transverse resonance

method.

In this paper, the generalized finline configuration is

analyzed by the conventional mode-ma,tching method. The

formulation varies the numbers of eigenfunction expansion

terms from one region to another, when necessary. It

makes it possible to investigate the relative and absolute

convergence properties of the electromagnetic field solu-

tions analyzed by the mode-matching method [11]. Many

test cases are performed for both relative and absolute

convergence studies and the optimal choice of ratios corre-

sponding to the numbers of expansion terms in different

regions is determined in a systematic way. By adopting the

optimal choice of ratios, best field matchings along the

interfaces between any two adj scent regions of the firdine

can be achieved. The optimal choice of ratios results in fast

convergence for both the propagation constant and the

characteristic impedance. If the optimal choice of ratios is

violated, very poor field matchings will be obtained, and

both the propagation constant ancl the characteristic

impedance exhibit either slow or unpredictable conver-

gence behavior. In certain cases they converge to wrong

values. The effect of the relative convergence on the value

of the characteristic impedance is found to be relatively

significant compared to that on the propagation constant.

Once the relative convergence study is completed, the

absolute convergence study is initiated to obtain the mini-

mal number of total expansion terms to save computer

CPU time.

In addition, the existence of the cc~mplex modes in the

generalized finlines has not been reported yet. Many re-

ports have shown that neglecting the existing complex

modes will cause substantial errors in waveguide step

discontinuity problems [4], [12], [13]. As a direct result of

the convergence studies, the solutions c)f the complex modes

of the generalized finline can be sufficiently accurate for

later analyses of the finline discontinuity problems. The

effects of the metallization thickness and the finline

mounting grooves on the guiding properties are fully inves-

tigated for the fundamental and the complex modes. For

the fundamental mode, the theoretical values of propaga-

tion constant and characteristic impedance are checked

against the existing data in [10] and [14]. Close results are

obtained, and the differences are discussed [15]. Excellent
agreement is obtained between the present paper and the

results in [15], which analyzed the effect of the finite

metallization thickness on the propagation constant and

the characteristic impedance of a bilateral finline. Since

the accuracy of the present approach is established, the

effects of metallization thickness and mounting grooves on

the complex modes are reported with confidence.

Finally, the fundamental, higher order, evanescent, and

complex modes for a specific asymmetric bilateral finline

are presented and the electric and magnetic field patterns

of one of the complex modes plotted. This information

serves as a prerequisite for finline discontinuity y problems

analyzed by the generalized scattering matrix technique.

II. METHOD OF ANALYSIS: MODE-MATCHING METHOD

A. Formulation

The generalized firdine shown in Fig. 1, with each region

arbitrarily extending in both the x and the y direction, is

analyzed. Assuming the factor eJ“~– ‘z, where y = a + j~,

the full-wave hybrid TE-to-z and TM-to-z fields in each

region i (i =1,2,3,4,5) are derived from the Hertzian

potentials @ and Y:

i(z) = VX v X Zz@(z)– japv X .ZzV(i)

fi(z) = Vx VX f?zV(z)+ jucv X F@(’) (1)

where 7, is the unit vector in the z direction.

The potentials +(’) and V(’) are in terms of eigenfunc-

tion expansions satisfying the required boundary condi-

tions in the y direction. They are summarized as follows.

Region 1:

~(l) = ~ zl~~s~)(y) sin(kx~’)x)
~=1

(2a)w(l) = ; Bnfc$l)(y) cos(kx:l)x).
~=o

Region j, j = 2,3,4:

~=1

+Ge~)cos[kx~’)(x - x}’))]}

Y(J) = & ~cj~)(y){Fh~)sin[kx~)(x –xfJ))]
~=o

+ @Z;) COS[kX:)(X – Xfj))] }. (2b)

Region 5:

#51 = ~ CH~s~5)(y) sin [kx~’)(a - x)]
?1=1

(2C)V(’) = ~ Dnfc$’)(y)cos [kxf)(a -x)].
~=o

Here ~s~~)( y) and ~cj~)( y ) are the y-directional eigenfunc-

tions, i.e.,

[ (YJ’))ljsj~)(y) =sin n7r

[ (,;:J))l/,m. ,3)fc~)(y) =cos n7r

In addition,

,X$J)=[4J,+J+Y2]

8~m = Kronecker delta, and ~j is the number of eigenfunc-

tions expansion terms in region j.
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The boundary conditions need to be satisfied at the

interfaces along X=hl, (hl+tl), (lzl+~l+ d), and

(hl+ll+d+tz), respectively. A particular example of
them can be expressed as

{

E (2)
~:: = Y, z J42) < Y < yj2)

o
Y13) < Y < Y12)> X$2) < y < y:)

H(3) Q Hf)
y, z =, Y}2) < Y < yjz~ (4)

atx=hl+tl.

Equations (2a) -(2c) indicate that 16 sets of unknown

coefficients exist. The boundary conditions as typically

shown in (4) contribute to 16 equations. It is possible to

set up the nonstandard eigenvalue matrix equation after

the coefficient elhnination process. To save CPU time, the

homogeneous matrix equation, i.e. (5), has the unknown

coefficients associated with the slot regions:

[G(y)] [x] =0 (5)

where

[G(Y)] = ([V(Y)] -[ Q(Y)] )[D(Y)]

[x] = [Fh(2)Ge(2)Gh(Z)Fe(2)Eh(A)Ge(A)Gh(A)Fe(A)l ‘o

Each of the matrices [G], [V], [Q], and [D] has the size

4(N2 + N4 + 1) by 4(N2 + Nq + 1). The matrices [Q] and

[D] contain diagonal submatrices only. The roots of the

equation det ([G(y)]) = O give rise to the solutions for the

propagation constants. Once the propagation constant is

known, the coefficient vector [x] is solved wittin a con-

stant multiplicative factor.

B. Characteristic Impedance

Applying the power–voltage definition, the characteris-

tic impedance of the dominant mode of the firdine is

obtained by the expression

zo=~
2P,

(6)

where V, is the voltage across the slot and P, is the

transported power associated with the slot, namely
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Fig. 2. Relative and absolute convergence studies for propagation con-
stant and characteristic impedance of the fundamental mode of a
symmetric bilateral finline with mounting grooves and finite conductor

thickness at 50 GHz. a = 2fJ = 7.112 m]m, d =125 #m, r = t = 5 Km,
h’wl = W2= 0.5 mm, gl = gz = 0.35 mm, Cj?)= 3.75, {jl) = C,) = 6j4)= fjs)

=1. (a) ~/kO versusltj. (b) 20 versusN~.

Line (1): identical number of expansion terms (NI = N..= Nq= ~~ =
NJ.

Line (2): Nz= Nd= 3, NI = N~= 25.
Line (3): Nz= Nd= 4, NI = N~= 28.
Line (4): Nz=N6= 7, Nl= N~= 50.
Line (5): ratio of NJ(J = 1,2,3,4, 5) to Ns is keg: at the corresponding

aspectratio, i.;, ~z = Ndz fi~( ~+g1+g2)and Nl= ,

NB= N~(
b+g1+g2)”

~ K=~q’0’(%37Y)& xo~(hl, hl+tl) or xO=(hl+ tl+d, hl+tl-td+t2)
.VY

I~ Re ~ ~~ (E~’)Hy*(i) – E\i)Hx*(i)) dxdy, for unilateral firdines

P,=
,=1 s,

[7)

~ Re ~ Jj (Ef)Hy*(i) – EjiJHx*f~)) dxdy, for symmetric bilateral finlines.
,=1 &

III. RESULTS

A. Convergence Studies for the Fundamental Mode

For all the cases presented in this paper, V, varies less Fig. 2(a) and (b), which uses At (the number of eigen-

than 0.3 percent for XO in the interval (hl, hl + tl) or function expansion terms in region 3 of Fig. 1) as the

(hl+rl+d, h1+t1+d+t2). abscissa, depicts the convergence behavior of the propaga-



1894 IEEETRANSACTIONSON MICROWAVETHEORYAND TECHNIQUES,VOL. 37, NO. 12, DECEMBER1989

-0
7J /
h along x=h,+t, Lines (2), (3), (4)
a

‘s
~

2

\

along x=hl+tl
Line (5)

~

y ( l/mm )

Fig. 3. Relative convergence studies of the aperture field EY illustrating

field matchings for four typical cases in Fig. 2. From top to bottom the
plots correspond to:

E, evaluated at x=hl + tl, Ml= N2=N3= N4= N5 =36;
E, evaluated at x = hl + tl, Nz = N4 = 7, NI = N5 = 50, N3 = 24;

E,, evaluated at x = hl, N2 = N4 = 7, NI = N3 = 50, N3 = 24;
E, eva@ated at x = h, + tl, NI = N~ = 50, N2 = N4 = 7, IVx= 60.

tion constant and the corresponding characteristic

impedance of the fundamental mode of a symrnetr~c bilat-

eral finline with a‘5 pm metallization thickness and a 0.35

mm groove depth, respectively. This is the same structure

as previously analyzed by Bornemann and Arndt [10]

using the generalized transverse reson~ce method (or the

modified rnode-matc@ng method). Besides N3, various

combinations of expansion terms for other regions are

chosen as the test conditions, designated as line (1) to line

(5). Assuming all thg eigenfunction expansion terms to be

equal in number, the convergence behavior is represented

by line [1) with solid circle symbols. Keeping the ratios of

N1(iV,) to N,(N.) equal to the aspect ratio b/wl and
varying the ratios of N3 to Nz (and NA), lines (2), (3), and

(4) correspond to the test condition whereby the conform-

it y of the ratio of eigenfunction [16] is satisfied at x = h ~

and x=(a–hz) and violated at X=hl+tl and X=hl+

II+ d. With both the ratios of NI(N5) to N2(N4) and Na to

Nz (and Nd) kept the same as the aspect ratios b/ wl and

(b+ gl + gz)/wl, respectively, the conformity of the ratio

of eigenfunction expansions is satisfied at all slot inter-

faces. This corresponds to line (5).

The maximum matrix dimension for each line is also

shown in Fig. 2. Line (1) depicts poor convergence even if

the matrix is 292 by 292 in size. Lines (2), (3), and (4)

‘\ I
J/A. [ S*,,Sf,,,,g,1,, ,,1.,1,,.,“,,1,,,,,,,? <,,,,.,,. ) ~

o&- ~—–~---–—–T- ‘-— ‘—r--–--+
50 60

f ( GIIz, )

600

N
.

3

500 -

400

300

200

Fig. 4. Normalized propagation constant /l/k. and characteristic
impedance ZO of the fundamental mode as a function of frequency.

Structural parameters: same as in Fig. 2.
. . . . . . . (dotted lines) ~/k. and ZO with NI = N2 = N3 = N4 = N5 =

36.

—- (solid lines) converged solutions of ~/kO and Z. with

Nl:N2:N3= Zr:wl:(wl+2gl).

● P/ko

o Z. }
SDA solutions after Schmidt and Itoh ( gl = gz = O,

tl = t2= o) [14].

converge to different asymptotic values. Line (5) illustrates

the best convergence among all the test conditions since

only five eigenfunction expansion terms (corresponding to

N3 equal to 42 in Fig. 2 and a matrix size of 44 by 44) in

each slot region result in solutions that deviate by less than

0.2 percent from the converged ones.

The above-mentioned observation is attributed to the

relative convergence phenomenon thoroughly discussed in

[11] and [17]. The relative convergence phenomenon can be

clearly observed from the E, aperture field matching at

x = hl + tl, I.e., the interface between slot region 2 and

groove region 3. Similar apert~e field plots can be per-

formed at other slot-dielectric (or air) interfaces. Fig. 3

plots the EY aperture field matching at x = hl or x = hl +

tl. The results, from top to bottom of Fig. 3, are associated

with the test conditions represented by lines (l), (2)–(4),

and (5) of Fig. 2, respectively. It is clear that the resultant

fields calculated by meeting the relative convergence re-

quirement have the best field matching, as shown on the

bottom two plots of Fig. 3.

Results illustrated by Figs. 2 and 3 confirm that the

relative convergence criterion needs to be satisfied to ob-
tain correct field solutions. Otherwise, the field solutions

may not converge to correct values regardless of the size of

the matrix [G].

Fig. 4 plots the complete frequency dispersion character-

istics of the fundamental mode with the same structural

parameters as used in Figs. 2 and 3. Here three types of

curves are generated for the propagation characteristics,

namely, the SDA solutions [14] in circle symbols, solid

lines for the mode-matching method satisfying relative

convergence criteria, and dotted lines without satisfying

the relative convergence criteria. Since the groove depth is

one fifth of the half-waveguide height, it has a negligible
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Fig. 5. Relative and absolute convergence studies of the normalized
propagation constant of one of the complex modes versus the value of
NI under different controlling parameters. N2 = 6, N4 = 2; N2 = 12,
N4 = 4; N2 = 24, N4 = 8; N2 = 30, N4 =10; N2 = 64, N4 = 22. N2/N4
G 3, N,= N = N5. u = 2.032 mm, b =1.27 mm, SI = S2= b/2, d~ =

30.85 mm, c~3 = 12, C\l) = C$z)= C$4)= C\s)=1, d = 32%b, tl = t2 = 1 roil,

WI = 64%b, WJ= 22X b, gl = g2 = O. (a) /3/.k0 versus NI. (b) a/kO
versus N1.

effect on the dispersion characteristics of the dominant

mode [7]. The fact that the metallization thickness tends to

lower the value of the characteristic impedance for the

dominant mode of a bilateral or a unilateral finline has

been reported in the literature [15]. Excellent agreement to

the data reported in the literature [15, e.g. fig. 7] is ob-

tained by the present approach. When comparing the

results for the characteristic impedance, the solid line is

indeed lower than that obtained by the SDA. The dotted

line has the opposite effect, which indicates that the field

solution is not accurate. Similar conclusion can be drawn

for the propagation constant.

B. Relative and Absolute Convergence Studies for the

Complex Modes

The procedure for the relative convergence studies per-

formed in the previous section has been successfully ex-

&-
a

so
-s

Fig. 6. Normalized propagation consta nt versus frequency for an asym-
metric bilateral finline with mounting grooves and finite metallization
thickness. a = 2.54 mm, b =1.27 mm, d = 30%b, tl = f2 = 0.7 roil,

WI = 30%b, wz = 45%b, S1 = 65%b, S2 = 57.5%b, dm = 42.5%a,

gl = g2 = 2.5 dk, <:3)= 10, # = C\2)= C:4J= <$5)=1.

(a)

Fig. 7.

(b)

Electric and magnetic field patterns of the complex mode at
point P of Fig. 6. f =90 GHz, y/k. = 0.84775+ jO.20412, at= O“,
60x 34 points. (a) Electric field pattern. (b) Magnetic field pattern.

tended to the complex modes. Similar results of the con-

vergence studies were reported in [18]. Only the expanded

final results are reported here, as shown in Fig. 5. The

solid dotted symbols in Fig. 5(a) and (b) correspond to the

condition whereby the relative convergence criteria are met
at both slot regions. Thus very good convergence proper-

ties are achieved in this case. It is interesting to note that

the complex modes require big,ger matrix size or more

eigenfunction expansion terms to have the converged prop-

agation constants within 0.2 percent of their converged

values. In one particular case of Fig. 5, A’z = 30, N4 = 10
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Fig. 8. Effects of metallization thickness and groove depth on the
propagation constant of one of the complex modes. Structural parame-
ters the same as in Fig. 5. (a) /.I/kO and a\ko versus groove depth g.
(b) ~/kO and a//rO versus conductor thickness t.

(iv, = IVg= NJ, 0.2 percent accuracy is obtained. But the

matrix size is 164 by 164, in contrast’ to that of 44 by 44

for the fundamental mode reported earlier.

C. Dispersion Characteristics of Fundamental Higher Order,

Evanescent, and Complex Modes ina Generalized Bilateral

Finline with Mounting Grooves and Finite Ikletallization
Thickness

The normalized propagation constants versus frequency

for an asymmetric bilateral finline with mounting grooves

and finite metallization thickness are presented in Fig. 6.

Notice that the relative dielectric constant is 10, much

lower than the value used in [19]. The complex modes exist

in and outside the full W-band region (75–110 GHz). The

third and fourth higher order modes have split into com-

plex modes already.

The electric and magnetic field patterns [20] of a partic-

ular complex mode (corresponding to point P of Fig. 6)

are plotted in Fig. 7(a) and (b), respectively. The field

distributions of this specific complex mode exhibit strong

interactions with the sidewalls, in contrast to the funda-

mental mode, which has most of its electromagnetic energy

confined near the slot regions. As expected, across the

air-dielectric interface, the normal component of the elec-

tric field is stronger in the air region while the magnetic

field lines are continuous and may form closed loops.

The influences of the groove depth and of the metalliza-

tion thickness of the finline on one of the complex modes

are illustrated in Fig. 8(a) and (b), respectively. The effects

of the metallization thicknesses are seen to be greater than

those of various groove depths. The groove depth and the

metallization thickness have opposite effects on the com-

plex modes. The former tends to shift the complex mode

region to the lower frequency and the latter to the higher

frequency. Similar results are observed for the symmetric

unilateral finlines.

IV. CONCLUSION

Extensive studies of the convergence properties of the

propagation characteristics for the generalized finline con-

figuration indicate that the relative convergence criterion

previously applied to a single waveguide step discontinuity

problem can still hold for the particular finline structure

with dual slots. The relative convergence criterion helps to

reduce the matrix size required to obtain accurate electro-

magnetic field solutions based on the mode-matching

method. If the relative convergence criterion is violated,

the propagation constant may still converge, but the aper-

ture field matching will be poor. Depending on whether

the modal solution belongs to the fundamental mode or

the complex modes, the eigenfunction expansion terms (or

the matrix size) may vary to reach the same accuracy. The

latter requires more expansion terms.

The relative convergence criterion will be extended to a

finline configuration with more than two slots. The accu-

racy of the finline step discontinuity problem formulated

by the generalized scattering matrix (GSM) approach de-

pends on correct modal field solutions. Since GSM for-

mulism incorporates dominant, higher order, evanescent,

and complex modes, any inaccurate modal solutions on

both sides of the discontinuity will contribute to the accu-

mulative errors associated with the GSM formulism. Thus

it is believed that the present approach will substantially

improve the accuracy of modeling the discontinuity char-

acteristics for a finline with fairly complicated cross-sec-
tional geometry.
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