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Abstract — A generalized bilateral finline with mounting grooves and
finite conductor thickness is analyzed by a full-wave mode-matching
method. The final nonstandard eigenvalue equation is derived from the
unknown coefficients in the slot regions to reduce the size of the matrix
equation. The convergence studies of the mode-matching method are first
performed for the fundamental mode of a symmetric bilateral finline. Both
the propagation constant and the characteristic impedance based on the
power—voltage definition are analyzed and compared to the existing data.
Excellent agreement begween various data is obtained and the effects of
metallization thickness and mounting grooves are discussed. The accurate
results for the fundamentzil mode obtained by the mode-matching method
-with considerations of both relative and absolute convergences apply
equally well to the analyses of the complex modes of the finline. The field
matching plots at the slot-dielectric (air) interface of the finline also

confirm that the converged solutions for the complex modes have superior. -

field matchings over the nonconverged ones. The dispersion characteristics
of the fundamental, higher order, evanescent, and complex modes are
presented for an asymmetric bilateral finline. The effects of mounting
grooves and metallization thickness on the complex mode propagation
constants are investigated and discussed.

‘1. INTRODUCTION

has become an important class of transmission lines in
millimeter-wave integrated circuits. To accurately charac-
terize the electrical behavior of the various types of discon-
tinuities which are frequently encountered in almost all the
practical finline integrated circuits, many rigorous analyti-
cal techniques have been developed, e.g. the spectral-
domain analysis by Zhang and Itoh [2], the transverse
resonance technique by Sorrentino and Itoh [3], and the
generalized scattering matrix (GSM) technique by a num-
ber of authors [4]-[6]. The authors in [2]-[6] dealt with the
ideal finlines with infinitely thin metallizations or without
mounting grooves. The influences of metallization thick-
ness and mounting grooves can be pronounced at higher
millimeter-wave frequencies [7]. The only analytical method
reported to solve the generalized finline structure shown in

SINCE THE introduction of the finline in 1972 [1], it
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Fig. 1. Generalized finline with mountjing grooves and finite metalliza-
tion thickness. (a) Generalized finline configuration. (b) Notation for
the corner coordinates and dimensions of a specific region j.

Fig. 1 that takes into consideration both metallization
thickness and substrate mounting grooves is the general-
ized transverse resonance method [8]-{10]. This technique
is the modified mode-matching method combined with a
transverse resonance relation. Regardless of the dimension
of each region, the technique genuinely: matches the
boundary conditions associated with the dielectric; slot,
and thick metal strip regions by an equal number of
eigenfunction expansion terms for each region. It was
mentioned briefly that the asymptotic behavior of the
normalized propagation constants [10, fig. 2] is sufficient
for 18 eigenfunction térms to be used for subsequent
calculations in the paper. No further detailed investiga-
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tions of the convergence properties of the propagation
constants and characteristic impedance of the finline have
been reported using the generalized transverse resonance
method.

In this paper, the generalized finline configuration is
analyzed by the conventional mode-matching method. The
formulation varies the numbers of eigenfunction expansion
terms from one region to another, when necessary. It
makes it possible to investigate the relative and absolute
convergence properties of the electromagnetic field solu-
tions analyzed by the mode-matching method [11]. Many
test cases are performed for both relative and absolute
convergence studies and the optimal choice of ratios corre-
sponding to the numbers of expansion terms in different
regions is determined in a systematic way. By adopting the
optimal choice of ratios, best field matchings along the
interfaces between any two adjacent regions of the finline
can be achieved. The optimal choice of ratios results in fast
convergence for both the propagation constant and the
characteristic impedance. If the optimal choice of ratios is
violated, very poor field matchings will be obtained, and
both the propagation constant and the characteristic
impedance exhibit either slow or unpredictable conver-
gence behavior. In certain cases they converge to wrong
values. The effect of the relative convergence on the value
of the characteristic impedance is found to be relatively
significant compared to that on the propagation constant.
Once the relative convergence study is completed, the
absolute convergence study is initiated to obtain the mini-
mal number of total expansion terms to save computer
CPU time.

In addition, the existence of the complex modes in the
generalized finlines has not been reported yet. Many re-
ports have shown that neglecting the existing complex
modes will cause substantial errors in waveguide step
discontinuity problems [4], [12], [13]. As a direct result of
the convergence studies, the solutions of the complex modes
of the generalized finline can be sufficiently accurate for
later analyses of the finline discontinuity problems. The
effects of the metallization thickness and the finline
mounting grooves on the guiding properties are fully inves-
tigated for the fundamental and the complex modes. For
the fundamental mode, the theoretical values of propaga-
tion constant and characteristic impedance are checked
against the existing data in [10] and [14]. Close results are
obtained, and the differences are discussed [15]. Excellent
agreement is obtained between the present paper and the
results in [15], which analyzed the effect of the finite
metallization thickness on the propagation constant and
the characteristic impedance of a bilateral finline. Since
the accuracy of the present approach is established, the
effects of metallization thickness and mounting grooves on
the complex modes are reported with confidence.

Finally, the fundamental, higher order, evanescent, and
complex modes for a specific asymmetric bilateral finline
are presented and the electric and magnetic field patterns
of one of the complex modes plotted. This information
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serves as a prerequisite for finline discontinuity problems
analyzed by the generalized scattering matrix technique.

II. METHOD OF ANALYSIS: MODE-MATCHING METHOD
A. Formulation

The generalized finline shown in Fig. 1, with each region
arbitrarily extending in both the x and the y direction, is
analyzed. Assuming the factor e/*'”"*, where y=a+ jB,
the full-wave hybrid TE-to-z and TM-to-z fields in each
region i (i=1,2,3,4,5) are derived from the Hertzian
potentials ¢ and ¥:

EO=pyxyxes? - jopvxey®

HO =gXxyXxe¥® + joey x & (1)
where €, is the unit vector in the z direction.

The potentials ¢ and ¥ are in terms of eigenfunc-
tion expansions satisfying the required boundary condi-
tions in the y direction. They are summarized as follows.
Region 1:

N
9V =Y 4,fsO(y)sin(kxx)

n=1

M
YO = Y B, fc®(y)cos(kxPx).
n=0
Region j, j=2,3,4:

(2a)

N
o) = Z fs,ﬂ”(y){Fe,(,”Sin[kxf,’)(x—xl(f))]

n=1
+GeW cos[kxP(x = x)] }
N
) = Xj: fcf/)(y){Fhﬁ,f)sin[kx,(,j)(x —x)]
n=0

+GhY cos[kxP(x - x)] ). (2b)
Region 5:

Ns
¢9 =Y C,fsO(y)sin[kxP(a—x)]

n=1

Ns
vO = ¥ D fe9(y)cos[kxO(a—x)]. (20)
n=0

Here f5(y) and fc{/)(y) are the y-directional cigenfunc-
tions, i.e.,

— i
. Y=
fS;SJ)(.V) = s [nw(—ly‘(—])—):l

— v
fcf,j)(y)=cos[nvr(y—l)%l)——)]/\/1+3no- (3)

In addition,

nmw \?
et =| i~ () + v

2.2
ko= wpoeo

12

8, = Kronecker delta, and N; is the number of eigenfunc-
tions expansion terms in region j.
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The boundary conditions need to be satisfied at the
interfaces along x =h;, (b, +1t,), (hy+1t+d), and
(hy+t,+d+1t,), respectively. A particular example of
them can be expressed as

2 2 2

O _ E®  yP<y<y®
v,z 3 2 2

W <y<y®, yP<y<y®

G =HO®
H” =HF),

¥ <y<y® (4)
at x=h, +1¢,.

Equations (2a)—(2c) indicate that 16 sets of unknown
coefficients exist. The boundary conditions as typically
shown in (4) contribute to 16 equations. It is possible to
set up the nonstandard eigenvalue matrix equation after
the coefficient elimination process. To save CPU time, the
homogeneous matrix equation, i.e. (5), has the unknown
coefficients associated with the slot regions:

[G(M][x]=0 (5)

where

[G(V)] = V()] -[e(v)D[D(+)]
[x] = [FR®Ge®GhPFe ®FhGe YGhOFe®]".

Each of the matrices [G], [V], [@], and [D] has the size
4(N,+ N,+1) by 4(N,+ N, +1). The matrices [Q] and
[D] contain diagonal submatrices only. The roots of the
equation det([G(y)]) =0 give rise to the solutions for the
propagation constants. Once the propagation constant is
known, the coefficient vector [x] is solved within a con-
stant multiplicative factor.

B. Characteristic Impedance

Applying the power-voltage definition, the characteris-
tic impedance of the dominant mode of the finline is
obtained by the expression

RiAk

= 6
2P (6)
where V.

, 1s the voltage across the slot and P, is the
transported power associated with the slot, namely

Zy

stot
‘ V;=/y" Ejlm(xo’ y)dyv

slot

Ve
2

4

For all the cases presented in this paper, ¥V, varies less

than 0.3 percent for x, in the interval (h;, h,+1) or

(hy+t,+d, hy+t,+d+1,).
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Fig. 2. Relative and absolute convergence studies for propagation con-
stant and characteristic impedance of the fundamental mode of a
symmetric bilateral finline with mounting grooves and finite conductor
thickness at 50 GHz. a =2b=17.112 mm, d=125 pm, {, =1, =5 um,
W =w; =05mm, g =g, =035mm, ¥ =375, ¢! =2 = = ¢
=1.(a) B/kq versus N (b) Z, versus M.

Line (1): identical number of expansion terms (M=Ny=N, =N, =
Ns).
Line (2): N, =N, =3, N;= N, =25,
Line (3): N,=N,=4, N,=N;=28.
Line (4): N,=N,;=7, N,=N;=50.
Line (5): ratio of N,(j=1,2,3,4,5)to N, is ke‘gt at the corresponding
. - 1
aspect ratio, i.e.,, N, = N, = N3(b_+£1+—g2) and N, = ;
Ny = Ny(———).
T Nbtg+g,

1 5 ) . .
—Re Y, f fs (E,ﬁ’)Hy*(’) - Ey(')Hx*(')) dxdy, for symmetric bilateral finlines.
1=1 't

x0€ (hy, +1) or xg€(h+t+d, hy+1+d+1,)

1 5 ' ) ) :
= Re 21 f /s (E}')Hy*(') - Ey(’)Hx*(’)) dxdy, for unilateral finlines

(7)

III. REsuLTS
A. Convergence Studies for the Fundamental Mode

Fig. 2(a) and (b), which uses N, (the number of eigen-
function expansion terms in region 3 of Fig. 1) as the
abscissa, depicts the convergence behavior of the propaga-
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Fig. 3. Relative convergence studies of the aperture field E, illustrating
field matchings for four typical cases in Fig. 2. From top to bottom the
plots correspond to:

E, evaluated at x="hy + 4, Ny= N, = N;= N, = N; = 36;

E, evaluated at x=f, + 4, Ny =N, =7, N, = N; =50, N; = 24;
E, evaluated at x=hy, N, =N, =7, N;= N;=50, N; =24;

E, evaluated at x=h; +#, N;=N;=50, N;=N,; =7, N;=60.

tion constant and the corresponding characteristic
impedance of the fundamental mode of a symmetric bilat-
eral finline with a 5 pm metallization thickness and a 0.35
mm groove depth, respectively. This is the same structure
as previously analyzed by Bornemann and Arndt [10]
using the generalized transverse resonance method (or the
modified mode-matching method). Besides N,, various
combinations of expansion terms for other regions are
chosen as the test conditions, designated as line (1) to line
(5). Assuming all the eigenfunction expansion terms to be
equal in number, the convergence behavior is represented
by line (1) with solid circle symbols. Keeping the ratios of
N,(N;) to N,(N,) equal to the aspect ratio b/w, and
varying the ratios of N; to N, (and N,), lines (2), (3), and
(4) correspond to the test condition whereby the conform-
ity of the ratio of eigenfunction [16] is satisfied at x = h,
and x = (a — h,) and violated at x=h, + 1, and x = h, +
t, + d. With both the ratios of N;(Ns) to N,(¥,) and N; to
N, (and N,) kept the same as the aspect ratios b/w; and
(b + g, + g,)/wy, respectively, the conformity of the ratio
of eigenfunction expansions is satisfied at all slot inter-
faces. This corresponds to line (5).

The maximum matrix dimension for each line is also
shown in Fig. 2. Line (1) depicts poor convergence even if
the matrix is 292 by 292 in size. Lines (2), (3), and (4)

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 12, DECEMBER 1989

2T 600

24 ( without satshing the relative comverzence antea )

(v)'%2

= 500

Hhy ( satisfying the relative convergence <utena

= 400

Zo { <atrfumg the telative comergenen critena )

= 300

.5
! \ . 3

g
8y ( without satishng ) aD Solutions [11]

i o Zy
the relatne convergence (uitotia )
L A — ] 200

10 20 30 40 50 60

f{GHz)

Fig. 4. Normalized propagation constant B/k, and characteristic
impedance Z; of the fundamental mode as a function of frequency.
Structural parameters: same as in Fig. 2.

------- (dotted lines) B/ky and Z; with N; =N, =N; =N, =N =

———— (solid lines) converged solutions of B/k, and Z; with
M:N:N;=biwg(wy +2g)).

® B/k

o Zz
t, =1, =0)[14].

SDA solutions after Schmidt and Itoh (gy=g,=0,

converge to different asymptotic values. Line (5) illustrates
the best convergence among all the test conditions since
only five eigenfunction expansion terms (corresponding to
N, equal to 42 in Fig. 2 and a matrix size of 44 by 44) in
each slot region result in solutions that deviate by less than
0.2 percent from the converged ones.

The above-mentioned observation is attributed to the
relative convergence phenomenon thoroughly discussed in
[11} and [17]. The relative convergence phenomenon can be
clearly observed from the E, aperture field matching at
x=h;+1t, ie., the interface between slot region 2 and
groove region 3. Similar aperture field plots can be per-
formed at other slot—dielectric (or air) interfaces. Fig. 3
plots the E, aperture field matching at x = h; or x=h, +
t,. The results, from top to bottom of Fig. 3, are associated
with the test conditions represented by lines (1), (2)—(4),
and (5) of Fig. 2, respectively. It is clear that the resultant
fields calculated by meeting the relative convergence re-
quirement have the best ficld matching, as shown on the
bottom two plots of Fig. 3.

Results illustrated by Figs. 2 and 3 confirm that the
relative convergence criterion needs to be satisfied to ob-
tain correct field solutions. Otherwise, the field solutions
may not converge to correct values regardless of the size of
the matrix [G].

Fig. 4 plots the complete frequency dispersion character-
istics of the fundamental mode with the same structural
parameters as used in Figs. 2 and 3. Here three types of
curves are generated for the propagation characteristics,
namely, the SDA solutions [14] in circle symbols, solid
lines for the mode-matching method satisfying relative
convergence criteria, and dotted lines without satisfying
the relative convergence criteria. Since the groove depth is
one fifth of the half-waveguide height, it has a negligible
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Fig. 5. Relative and absolute convergence studies of the normalized
propagation constant of one of the complex modes versus the value of
N, under different controlling parameters. N, =6, N,=2; N, =12,
Ny,=4; N,=24, N;=8; N,=30, N,=10; N,=64, N;=22. N, /N,
=3, y=Ny=N;. «=2032 mm, b=127 mm, s,=s,=b/2, d, =
0.85 mm, 69% =12, V=D =W =5 =1, d=32%b, t, =1, =1 mil,
w, =64%b, w,=22%b, g, =g,=0. (a) B/ky versus N. (b) a/k,
versus N,.

effect on the dispersion characteristics of the dominant
mode [7]. The fact that the metallization thickness tends to
lower the value -of the characteristic impedance for the
dominant mode of a bilateral or a unilateral finline has
been reported in the literature [15]. Excellent agreement to
the data reported in the literature [15, e.g. fig. 7] is ob-
tained by the present approach. When comparing the
results for the characteristic impedance, the solid line is
indeed lower than that obtained by the SDA. The dotted
line has the opposite effect, which indicates that the field
solution is not accurate. Similar conclusion can be drawn
for the propagation constant.

B. Relative and Absolute Convergence Studies for the
Complex Modes

The procedure for the relative convergence studies per-
formed in the previous section has been-successfully ex-
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Fig. 6. Normalized propagation constant versus frequency for an asym-
metric bilateral finline with mounting grooves and finite metallization
thickness. a=2.54 mm, b=127 mm, d=30%b, t,=1,=0.7 mil,
wy = 30%b, w, =45%b, s =65%b, 5, =1575%b, d,=42.5%a,

gi=8 =25 mils, €Y =10, &l = ¢? = =¥ =1,

K

=

A

Fig. 7. Electric and magnetic field patterns of the complex mode at
point P of Fig. 6. f=90 GHz, v/k, = 0.84775+ j0.20412, wt=0°,
60 % 34 points. (a) Electric field pattern. (b) Magnetic field pattern.

tended to the complex modes. Similar results of the con-
vergence studies were reported in [18]. Only the expanded
final results are reported here, as shown in Fig. 5. The
solid dotted symbols in Fig. 5(a) and (b) correspond to the
condition whereby the relative convergence criteria are met
at both slot regions. Thus very good convergence proper-
ties are achieved in this case. It is interesting to note that
the complex modes require bigger matrix size or more
eigenfunction expansion terms to have the converged prop-
agation constants within 0.2 percent of their converged
values. In one particular case of Fig. 5, N, =30, N,=10
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Fig. 8. Effects of metallization thickness and groove depth on the
propagation constant of one of the complex modes. Structural parame-

ters the same as in Fig. 5. (a) B/k, and «/k, versus groove depth g.
(b) B/k, and a/k, versus conductor thickness z.

(N, = N, = N;), 0.2 percent accuracy is obtained. But the
matrix size is 164 by 164, in contrast to that of 44 by 44
for the fundamental mode reported earlier.

C. Dispersion Characteristics of Fundamental, Higher Order,
Evanescent, and Complex Modes in a Generalized Bilateral
Finline with Mounting Grooves and Finite Metallization
Thickness

The normalized propagation constants versus frequency
for an asymmetric bilateral finline with mounting grooves
and finite metallization thickness are presented in Fig. 6.
Notice that the relative dielectric constant is 10, much
lower than the value used in [19]. The complex modes exist
in and outside the full W-band region (75-110 GHz). The
third and fourth higher order modes have split into com-
plex modes already.

The electric and magnetic field patterns [20] of a partic-
ular complex mode (corresponding to point P of Fig. 6)
are plotted in Fig. 7(a) and (b), respectively. The field
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distributions of this specific complex mode exhibit strong
interactions with the sidewalls, in contrast to the funda-
mental mode, which has most of its electromagnetic energy
confined near the slot regions. As expected, across the
air—dielectric interface, the normal component of the elec-
tric field is stronger in the air region while the magnetic
field lines are continuous and may form closed loops.

The influences of the groove depth and of the metalliza-
tion thickness of the finline on one of the complex modes
are illustrated in Fig. 8(a) and (b), respectively. The effects
of the metallization thicknesses are seen to be greater than
those of various groove depths. The groove depth and the
metallization thickness have opposite effects on the com-
plex modes. The former tends to shift the complex mode
region to the lower frequency and the latter to the higher
frequency. Similar results are observed for the symmetric
unilateral finlines.

IV. CoNCLUSION

Extensive studies of the convergence properties of the
propagation characteristics for the generalized finline con-
figuration indicate that the relative convergence criterion
previously applied to a single waveguide step discontinuity
problem can still hold for the particular finline structure
with dual slots. The relative convergence criterion helps to
reduce the matrix size required to obtain accurate electro-
magnetic field solutions based on the mode-matching
method. If the relative convergence criterion is violated,
the propagation constant may still converge, but the aper-
ture field matching will be poor. Depending on whether
the modal solution belongs to the fundamental mode or
the complex modes, the eigenfunction expansion terms (or
the matrix size) may vary to reach the same accuracy. The
latter requires more expansion terms.

The relative convergence criterion will be extended to a
finline configuration with more than two slots. The accu-
racy of the finline step discontinuity problem formulated
by the generalized scattering matrix (GSM) approach de-
pends on correct modal field solutions. Since GSM for-
mulism incorporates dominant, higher order, evanescent,
and complex modes, any inaccurate modal solutions on
both sides of the discontinuity will contribute to the accu-
mulative errors associated with the GSM formulism. Thus
it is believed that the present approach will substantially
improve the accuracy of modeling the discontinuity char-
acteristics for a finline with fairly complicated cross-sec-
tional geometry.
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